

Tirantes estructurales

Sistema de tensión y compresión.

Código de matriz de datos Para la identificación individual y el aseguramiento de la calidad

Aberturas de inyección de sellante para prevenir la corrosión en las zonas estrechas

Protección especial contra la corrosión en la rosca de la barra corresponde a la clase de corrosión C3 larga

Profundidad de apriete controlada para mayor seguridad en el montaje

Hueco ciego para una mejor protección contra la corrosión

Resistente a cargas marginales muy alto

Innovación

En sistemas de tirantes

cortartec

Sistema de barra de tracción HMR 7505
Variantes del sistema 6 - 7
Componentes del sistema 8 - 9
Tableros de conexión10
Cruzamientos 11
Protección contra la corrosión
Garantía de Calidad 13
HMR sistema de tirantes de compresión 14

HMR 750 Sistema de Tirantes

El sistema de tirantes HMR 750 ofrece a la arquitectura moderna un producto innovador y atractivo, con excelente protección contra la corrosión, alta capacidad de carga y mayor seguridad en su instalación.

Detalles del sistema Tabla1

Rosca de tornillo	Ø	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100
Diámetro de la varilla	Mm	12	15	19	23	28	34	40	45	54	62	74	83	88	100
Carga limite de tracción	kN	43	81	126	182	290	423	605	795	1157	1539	2213	2799	3154	3928
Peso de la varilla	kg/m	0,89	1,39	2,23	3,26	4,83	7,13	9,87	12,49	17,98	23,70	33,76	42,47	47,75	61,65
Comp. máximo de la caña	Mm							12.	000						

La resistencia a la tracción de los tirantes cumple con DIN EN 1993-1-8, Tabla 3.4 y DINEN 1993-1-1 Sección 6.2.3 Factor de seguridad parcial M0 = 1.0 y M2 = 1.25

Los sistemas de tirantes HMR se fabrican en tamaños de rosca de M12 a M100. La varilla redonda se suministra de serie en el sistema HMR 750 y se caracteriza por unas fuerzas de tracción de trabajo muy elevadas. Los accesorios de los extremos están moldeados, lo que resulta en soluciones de diseño estructural más económicas.

Los tirantes se pueden entregar hasta una longitud de barra simple, sin costuras, hasta 12 m. Son posibles longitudes más largas con la ayuda de acoplamientos. Todos los accesorios están diseñados para que puedan absorber la máxima carga de tracción de las barras.

Afinación Tabla 2

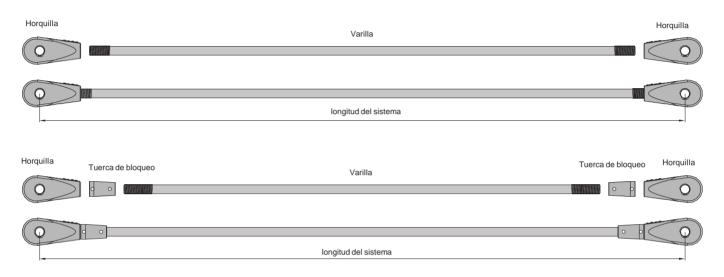
Rosca de tornillo	Ø	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100
Sistema de 2 horquillas	mm	± 12	± 16	± 20	± 24	± 30	±36	± 42	±48	± 56	±61	± 71	± 78	± 80	± 85
Tensor	mm	± 20	± 25	± 25	± 30	± 30	±40	± 40	±40	± 50	±50	± 50	±50	± 60	± 60
Acoplador central	mm	±21	±29	±32	±38	±43	±53	±64	±69	±84	±96	±113	±123	±133	±148

La longitud del sistema se define por la distancia de pin a pin desde el centro. Girando la rosca derecha / izquierda en los extremos de la horquilla, las longitudes del sistema se pueden ajustar con precisión. El uso de tensores proporciona una capacidad de ajuste adicional.

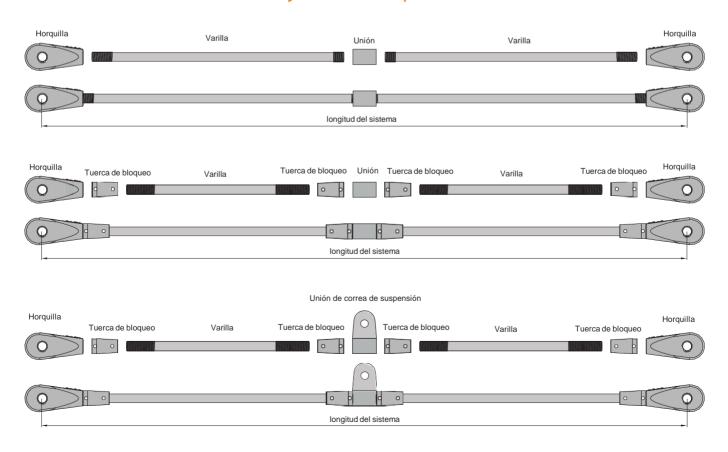
Protección contra la corrosión:

Los sistemas de barra de tensión HMR están disponibles en los siguientes acabados superficiales:

- Bruto brillante*
- galvanizado
- termolacado
- ★ Pintado
- Dúplex revestido

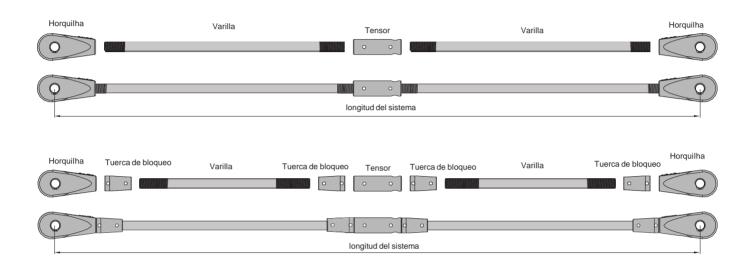

^{*} Los accesorios se suministrarán galvanizados..

Variantes del sistema

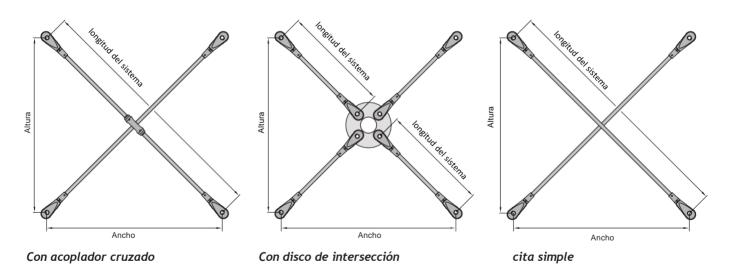


Aunque se trate de estructuras subterráneas, estructuras de fachadas, suspensiones de marquesinas o suspensiones de techos, la variedad de opciones de diseño del sistema de tirantes HMR 750 proporciona una solución arquitectónica y cualitativa para casi cualquier tipo de aplicación.

Versiones básicas



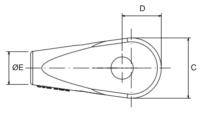
Sistema con unión central o con unión y tuercas de bloqueo

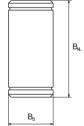


Sistema con racor tensor central y con racor tensor y contratuercas

Cruzamientos

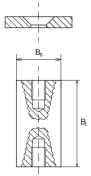
Componentes del sistema




El diseño elegante de los componentes del sistema permite una transición suave desde la barra, que encaja perfectamente en el concepto arquitectónico general de una construcción de acero, madera o vidrio.

Horquilla Tabla 3

Х	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
W (mm)	12	15	19	23	28	34	40	45	54	62	74	83	88	100
declive	1,75	2	2,5	3	3,5	4	4,5	5	4	4	4	4	4	4
A (mm)	77	100	122	144	181	210	246	279	334	378	444	509	534	611
B (mm)	22,0	28,2	36,8	44,0	50,4	65,0	76,6	89,2	99,8	119,6	150,0	155,4	174,2	179,2
C (mm)	35	46	55	66	83	97	112	127	151	174	207	243	255	298
D (mm)	23	30	36	44	55	64	72	83	100	115	136	153	163	188
E (mm)	19	25	29	35	44	52	60	69	80	91	108	121	129	143
G (mm)	12	15	18	23	25	33	38	43	48	59	74	74	84	89
I (mm)	48	63	77	91	116	133	157	178	217	245	287	334	349	406
M _{EL} av. de acoplamiento (mm)	18	24	30	36	45	54	63	72	84	94,5	111,5	124	130	142,5



Unión anillo de retención DIN 471 (standard)

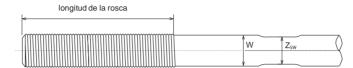
Tabla 4

	Х	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
.	B _D (mm)	12,0	16,0	21,0	25,0	31,0	37,0	43,0	49,0	58,0	66,0	78,0	91,0	95,0	110,0
	B _{NL} (mm)	31,6	38,8	49,0	57,2	67,0	82,2	96,8	112,0	122,6	145,4	175,8	183,2	203,0	211,2
		X Ro	sca(M)	B _D	=> Ø (del torr	nillo	E	3 _{NL} => L	ongitu	d del t	ornillo			

Tornillos con arandelas (bajo pedido)

Tabla 5

Х	M 12	M 16	M 20	M 24	M 30	M36	M 42	M 48	M 56	M 64	M76	M 85	M 90	M 100
B _D (mm)	12,0	16,0	21,0	25,0	31,0	37,0	43,0	49,0	58,0	66,0	78,0	91,0	95,0	110,0
B _∟ (mm)	25	31	40	47	53	68	81	93	104	126	156	161	181	186
	Х	Rosc	a(M)	B _D =>	Ø Tor	nillo	BL	=> Lor	ngitud o	del torr	nillo			


Componentes del sistema

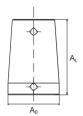
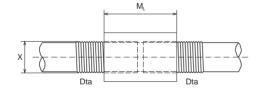

Varilla del sistema de tracción de rosca laminada (con / sin SW)

Tabla 6

)	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
Z _{sw} (mm)	10	13	16	20	25	30	36	42	49	56	68	78	82	91
W (mm) 12 15 19 23 28 34 40 45 54 62 74 83 88 100														
	X Ro	sca (M) Z _s	√=> Fa	acetado	a la c	lave							

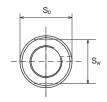
Tuerca de bloqueo

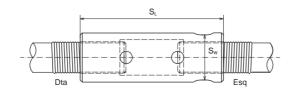

Tabla 7

Х	M 12	M 16	M 20	M 24	M 30	M36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
A _D (mm)	19	25	29	35	44	52	60	69	80	91	108	121	129	143
A _L (mm)	36,3	44,4	51,0	57,6	67,0	80,4	89,8	99,2	110,4	120,6	135,4	148,0	152,0	161,0
	X Ro	sca(M)	A _D	=> Ø (de la co	ontratu	erca	/	ار=> L	ongitud	d de la	tuerca	de blo	queo.

Unión Tabla 8

	X M 12	2 M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
M _D (mm)	20	26	32	38	47	56	66	75	87	99	119	135	143	160
M _∟ (mm)	32	40	48	56	68	80	92	104	120	136	160	178	188	208
	Χ	Rosca (M) N	Λ _D => Ø	del ui	nión	M _L =:	> durac	ción de	la uni	ón			





Unión tensora (tensor)

Tabla 9

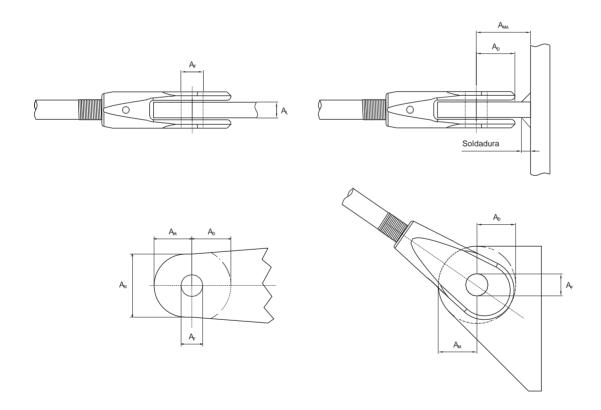
Х	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
S _D (mm)	20	26	32	38	47	57	67	76	90	103	122	137	145	161
S _L (mm)	64	82	90	108	120	152	164	176	212	228	252	270	300	320
S _w (mm)	18	23	28	32	41	50	60	70	80	92	112	125	135	150
Ajuste (mm)	± 20	± 25	± 25	± 30	± 30	±40	± 40	± 40	± 50	±50	± 50	± 50	± 60	± 60
X Rosca	(M) S _r	_ => Ø	del ur	nión S	Տւ => L	ongitu	d del te	ensor		Sw	=> tam	naño cla	ave	

Tableros de conexión

Los tirantes están conectados a la estructura a través de las placas de conexión. Estas placas a su vez, están diseñadas de acuerdo con los requisitos estáticos y constructivos, sin embargo, los detalles para la conexión del yugo deben considerarse como se muestra en la tabla 10. El material debe cumplir con la calidad S355J2 + N según DIN EN 10025.

tableros de conexión

Tabla 10


X	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
A _L (mm)esp.da placa	10	12	15	20	22	30	35	40	45	55	70	70	80	85
A _F (mm)BohrlochØ	13	17	23	27	33	39	45	51	60	68	80	93	98	113
A _M (mm)	22	30	37	43	56	64	79	89	109	122	143	171	176	206
A _N (mm)	35	50	60	70	90	105	128	147	178	198	232	280	288	338
A _D (mm)	23	30	36	44	55	64	72	83	100	115	136	153	163	188
A _{MA} (mm)	38	48	58	74	88	108	124	142	167	196	240	257	281	314

Rosca X (M) AL => espesor de la placa AF => Agujero Ø (± 0,50 mm)

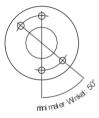
AM => Distancia del borde (+ 2 / -0 mm) AN => tablero de conexión

min. AD => La dimensión de la distancia corresponde a la dimensión

D Distancia mínima recomendada desde la cabeza de la horquilla AMA

Cruzamientos

Para garantizar la estabilidad de una estructura, se necesita refuerzos de rigidez para estabilizar la estructura contra las fuerzas que actúan horizontalmente. Los tirantes HMR se pueden utilizar en diferentes situaciones en los proyectos pueden reforzar y se encajan armoniosamente en cualquier estructura dándole un toque moderno.


Los componentes del sistema, como discos circulares o acopladores cruzados, permiten la conexión central en los puntos de encuentro y de cruce. Sobre todo, los acopladores cruzados HMR ofrecen una alternativa de bajo costo porque este componente minimiza la cantidad de horquillas que se deben aplicar.

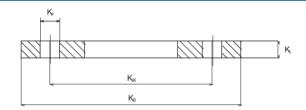
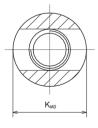
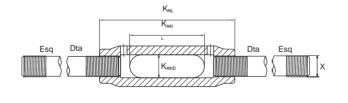

Discos que se cruzan

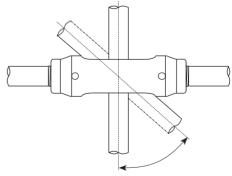
Tabla 11

Х	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
K _∟ (mm)	10	12	15	20	22	30	35	40	45	55	70	70	80	85
K _F (mm)	13	17	23	27	33	39	45	51	60	68	80	93	98	113
K _D (mm)	151	196	233	274	350	402	477	541	644	740	869	1029	1071	1243
Ø do furo central	50	70	80	90	120	140	160	180	230	250	300	350	375	400
K _{LK} (mm)	107	136	159	188	238	274	319	363	426	496	583	687	719	831

X Rosca (M) $K_L \Rightarrow$ Grosor = AL $K_F \varnothing$ del hoyo (± 0,50 mm) $K_D \Rightarrow \varnothing$ del disco y \varnothing el centro $K_{LK} \Rightarrow \varnothing$ del eje de perforación




acoplador cruzado


Tabla 12

Х	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85	M 90	M 100
K _{MD} (mm)	23	31	38	46	57	69	81	92	110	125	149	168	178	198
K _{ML} (mm)	76	103	124	149	181	219	258	290	343	318	376	417	444	494
K _{MNL} (mm)	42	57	70	85	105	127	149	169	201	155	184	207	219	244
K _{MND} (mm)	13,0	17,5	21,5	26,0	32,0	38,0	44,0	50,5	59,0	67,0	79,0	89,0	94,0	105,0
Ângulo mínimo	45°	45°	45°	45°	45°	45°	45°	45°	45°	30°	30°	30°	30°	30°

Las contravenciones cruzadas sin utilizar componentes del sistema especialmente para el proyectadas, como discos o acopladores cruzados. Esta solución aún puede tolerarse con tirantes finos y muy largos, la flexión de las barras dará como resultado esfuerzos laterales indeseables que causan tensión en las horquillas y cargas laterales con momentos flectores no autorizados.

Las placas de conexión desplazadas pueden evitar estos esfuerzos no autorizados de las horquillas, sin embargo, este arreglo se puede producir momentos de desplazamiento en la estructura. Además, el contacto de las barras que se cruzan dañan la superficie de los tirantes debido al movimiento (ver Fig. Derecha).

Protección anticorrosión

des demandas s abertas de n surgir pontos os varões. O forma da sua hado, logoo, a

es podem estar e proteção. A n seladas sem

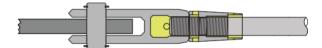
ntra corrosão é erto pode ser o selante HMR s aberturas de os (Forquilhas,

te elástico ste fim. cción contra la corrosión del sistema de tirantes HMR 750 resiste la exposición a la niebla salina durante 480 h rantiza un período de protección de C3L o C4M para todo el sistema de tirantes, incluyendo las roscas..

ente las roscas en los extremos de las varillas de nas de tirantes representan el punto débil de la 1 contra la corrosión.

i - Galvanizado en caliente" realizan el galvanizado ca. Se asume que las roscas se giran (enhebran) mente después de salir del baño de zinc. Este isegura que el recubrimiento de zinc en las roscas i condiciones adecuadas, un espesor mínimo de ento de zinc de 50 µm).

odo no se puede utilizar debido a la longitud de los Por lo tanto, las roscas en los extremos de las cepillan o se roscan después de la galvanización :e.

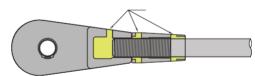

as sobre la garantía de estos procesos de n están absolutamente justificadas, ya que ambos entos afectan el espesor de la capa de do en caliente y no pueden realizarse de manera o uniformemente medible.

ecuencia, estos métodos no proporcionan rotección adecuada contra la corrosión.

otección contra la corrosión del sistema de ntes HMR está garantizada al 100% por un nuevo proceso de fabricación, galvanizado en caliente según DIN EN ISO 1461.INCLUYENDO HILOS

Rosca del extremo de la varilla HMR después de la prueba de niebla salina durante 480 h.

En el exterior, los tirantes están expuestos a grandes exigencias de tiempo y humedad. Con horquillas en áreas de paso abiertas, bajo la influencia del mal tiempo, pueden aparecer manchas de corrosión en las roscas en los extremos de las barras. El sistema HMR elimina este problema por la forma de su horquilla en la que el orificio de paso es ciego, cerrado, por lo que se evita la penetración de humedad.

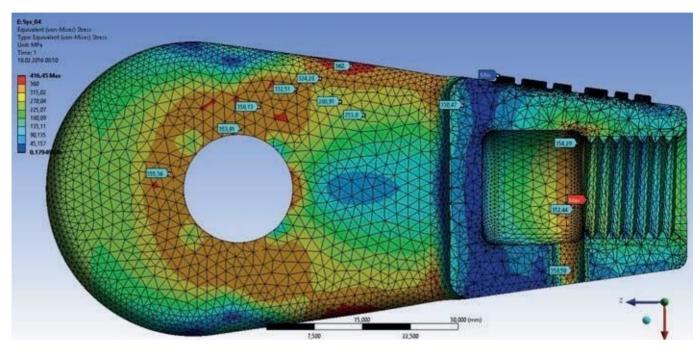


Horquilla con agujero ciego.

Los tirantes una vez ensamblados en sus extremos pueden estar sujetos a corrosión al romper la barrera de protección. La humedad penetra en las roscas, si no se sellan sin medidas adicionales.

La galvanización en estos puntos como protección contra la corrosión es insuficiente. La corrosión en las zonas de pellizco se puede eliminar definitivamente cuando se utiliza nuestro sellador HMR, que es permanentemente elástico. Se aplica en aberturas de inyección especialmente diseñadas en accesorios (horquillas, contratuercas, uniones, etc.).

Sellado con sellador HMR permanentemente elástico mediante aberturas de inyección diseñadas para tal fin.


Horquilla con sellador permanentemente elástico en cavidades Clases de protección contra la corrosión según DIN EN ISO 12944

Grado de corrosió n	Corrosión	Período de protecció n contra la corrosió n (clase)	Duración de la protecci ón (años) *	Influencia de la niebla salina en las horas (h)	Ejemplos de entornos típicos
C1	interior muy bajo	corto	2-5 Años	-	Solo interior:
insignificante	poco agresivo	mediano	5 a 15Años	-	edificios aislados
		largo	más 15 Años	-	(60% rel.F.)
C2	Exterior interior	corto	2 A 5 Años	-	Atmósfera poco
bajo	bajo - no muy	mediano	5 A 15 Años	-	contaminada, clima
	agresivo	largo	+ 15Años	-	seco y áreas rurales.
C3	moderadamente	corto	2 a 5 Años	120	Atmósfera urbana e
moderar	agresivo interior /	mediano	5 a 15Años	240	industrial con
	exterior	largo	+ 15Años	480	contaminación moderada por SO2 o clima moderado
C4	Interior / exterior	corto	2 a 5 Años	240	Atmósfera industrial
forte	muy agresivo	mediano	5 a 15Años	480	y atmósfera costera
		largo	+ 15 Años	720	con carga salina moderada
C5-I	interior / exterior	corto	2 a 5 Años	480	Atmósfera industrial
muitoforte	muy agresivo	mediano	5 a 15Años	720	con alta humedad
(indústria)		largo	+ 15Años	1440	relativa y atmósfera agresiva.
C5-M	muy alto	corto	2 a 5 Años	480	- ·
muitoforte	maritimo interior	no interior mediano 5 a 15 Años 720		720	Zonas costeras y mar adentro con
(mar)	y exterior	Largo	+ 15 Años	1440	alta carga de sal

Garantía de calidad

La innovación y la garantía de calidad son la base de nuestro negocio. El buen trabajo de desarrollo, la confiabilidad del proceso de producción, el control continuo y un excelente equipo garantizan un alto estándar constante de calidad garantizada.

Modelo FEM de una horquilla M16 durante el desarrollo.

Abb. TUMünchen

Nuestro sistema de barra de tiro HMR 750 fue desarrollado en cooperación con TU Munich.

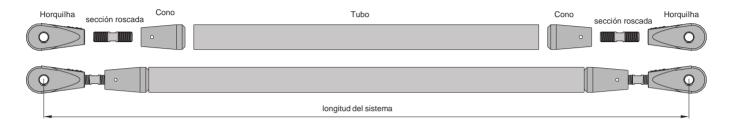
Ensayos de tracción en una horquilla M16 con una carga de rotura de 150 kN. Fig. TU Munich

La última
tecnología de corte
de hilo garantiza
nuestra calidad de
fabricación y refuta
la afirmación de
que solo los hilos
cortados son una
buena solución.

Cada barra de tracción que sale de nuestra línea de producción cuenta con una identificación individual para que pueda leer la información necesaria para el montaje y fabricación en cualquier momento. Esto asegura una trazabilidad completa del producto, los pasos de producción y el material.

Barra de tensión con código DataMatrix para identificación única.

Además de las características de fabricación habituales y el material específico, es posible introducir datos del cliente. Estos incluyen el número de posición, la longitud del sistema, los datos del proyecto y mucho más. Para que nuestros clientes puedan leer estos datos, proporcionamos una aplicación para teléfonos inteligentes.


Sistema de tirantes de compresión HMR

Una extensión innovadora de nuestra gama de productos es el sistema de tirantes de compresión HMR, que se puede integrar de manera ideal en casi cualquier aplicación estructural.

Los sistemas de barras de compresión combinan horquillas estándar con un tubo redondo. La transición consta de un cono, que se suelda al tubo redondo.

La conexión del cono a la horquilla se realiza con una sección roscada, las varillas de compresión están diseñadas para que las fuerzas de tracción o compresión puedan ser absorbidas.

Dimensiones de la tubería y fuerzas de compresión límite

Tabla 13

	Horquilha	M 12	M 16	M 20		M 24	M 30	M 36	M 42	M 48	M 56	M 64	M 76	M 85		M 90	M 100
Γ	Tubo Ø (mm)	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3	193,7	219,1	244,5	273,0	323,9	323,9	323,9
	Grosor (mm)	4	5	5		5	5	6,3	10	10	10	12,5	16	16		16	16
	Máxima resist.a la compresión (kN)	25,61	61,79	100,02		149,23	241,45	360,35	519,54	690,86	994,94	1333,95	1933,76	242	7,32	2752,94	3407,59

Nota: Las fuerzas de presión límite enumeradas son según. Determinado en 1993. El cliente siempre debe proporcionar un dimensionamiento estático de las cargas de presión límite.

Afinación Tabla 14

	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100
Sistema de 2 horquillas	± 12	±16	± 20	±24	± 30	±36	± 42	±48	± 56	±64	± 76	±85	±90	± 100

La longitud del sistema se define por la distancia de pin a pin desde el centro. Girando la rosca derecha / izquierda en los extremos de la horquilla, las longitudes del sistema se pueden ajustar con precisión.

protección contra la corrosión

Los sistemas de varillas de empuje HMR están disponibles en los siguientes acabados superficiales:

- ★ En bruto lavadobrillante*
- Galvanizado en caliente
- * Termolacado
- Pintado
- dúplex revestido
- * El horquilla, los pernos y los pernos roscados se suministran con un acabado galvanizado en caliente.

Portugal -Lisboa (+351) 219 824 133 geral@cortartec.net

Brasil - Rio de Janeiro (+55) **21 4042 0115** brasil@cortartec.net

España - Madrid (+34) **910 831 913** espana@cortartec.es

Francia - Lyon (+33) 975 181 167 info@cortartec.fr

Maroc - Casablanca (+212) **529 04 43 13** maroc@cortartec.net

United States - Dover NH (+1) (603) 285 68 47 usa@cortartec.net

